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SUMMARY

Multivariate receptor models aim to identify the pollution sources based on multivariate air pollution data. This
article is concerned with estimation of the source profiles (pollution recipes) and their contributions (amounts of
pollution). The estimation procedures are based on constrained nonlinear least squares methods with the
constraints given by nonnegativity and identifiability conditions of the model parameters. We investigate several
identifiability conditions that are appropriate in the context of receptor models, and also present new sets of
identifiability conditions, which are often reasonable in practice when the other traditional identifiability
conditions fail. The resulting estimators are consistent under appropriate identifiability conditions, and standard
errors for the estimators are also provided. Simulation and application to real air pollution data illustrate the
results. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate receptor modeling is a collection of methods used to identify pollution sources based on a

series of concentrations of airborne gases or particles measured over time. Traditionally, a multivariate

receptor model has been applied to the measurements on multiple chemical species (say p different

chemical species) collected at a single monitoring site (a receptor). The basic assumption in receptor

modeling is chemical mass balance (see, for example, Henry et al., 1984; Hopke, 1985, 1991). That is,

the total airborne particulate mass measured at the receptor is a linear sum of the contributions of the

individual sources. Let q (q< p) be the number of sources. Based on the chemical mass balance

equation aforementioned and the assumption that the relative amounts of the chemical species remain

approximately the same as particles/gases travelling from sources to the receptor, a multivariate
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receptor model takes the form of

yi ¼
Xq
k¼1

�ikPk þ "i; i ¼ 1; . . . ; n ð1Þ

where yi ¼ ðyi1; yi2; . . . ; yipÞ is the ith observation at the receptor, Pk ¼ ðpk1; pk2; . . . ; pkpÞ is the kth

source composition profile consisting of the fractional amount of each chemical species in the

emissions from the kth source, �ik is the contribution from the kth source at time i, and

"i ¼ ð"i1; "i2; . . . ; "ipÞ is the measurement error in the ith observation.

Air pollution data are often obtained as concentrations of a single species (e.g. SO2) measured from

multiple monitoring sites. This can be considered as a multivariate dataset for which the different

monitoring sites play the role of different variables. Let p be the number of monitoring sites. Assuming

the sources are spatially distinct and environmental conditions (such as wind) over the monitoring sites

are fairly stable, (1) can still be applied to this type of data with the spatial profiles substituted for the

source composition profiles. Here, the kth source spatial profile represents the relative amounts of

the species conveyed to p monitoring sites from the kth source. The closer the monitoring site is to the

source, the higher the relative amount in the spatial profile is. Thus, source identification can be

facilitated by using these spatial profiles to locate the sources (source regions). One of the purposes of

the article is to illustrate how a conventional multivariate receptor model (developed for multivariate

air pollution data collected from a single receptor) can be extended to spatial data collected from

multiple receptors.

Examples of conventional multivariate receptor modeling include principal component analysis,

exploratory factor analysis, target transformation factor analysis, and self-modeling curve resolution

(see, for example, Henry, 1991). Estimators from these approaches, however, are not guaranteed to

have good statistical properties such as consistency. Also, uncertainty estimates (standard errors) are

not provided by those methods.

In matrix terms, model (1) can be written as

Y ¼ APþ E ð2Þ

where A is an n� q source contribution matrix, P is an q� p source (spatial) profile matrix and E is an

n� p error matrix.

In relation to statistical models, this can be viewed as a factor analysis model in the sense that both

A and P are the unknown parameters that need to be estimated. (The matrices A and P can be related to

a matrix of factor scores and to a factor loading matrix, respectively.) The purpose of factor analysis is

to explain the correlations among the observed variables by a set of fundamental factors. It should be

noted that our objective in this article is not to predict pollutant concentration at unminitored sites

using spatial correlations, but to explain spatial correlations by a set of common factors, i.e. major

pollution sources, which is different from the ordinary spatial statistics context. This involves

estimating the number of major sources, q, their spatial profiles, P, and contributions, A. This goal,

however, cannot be achieved without additional assumptions, which will be given more attention

hereafter.

The number of major pollution sources (factors) q will be assumed known throughout the article.

Although estimation of q is a nontrivial problem, it is not the purpose of this article (see Henry et al.,

1999 and references therein for various practical methods of estimating q).

Even with the known q, there is a fundamental indeterminacy in model (2), i.e. the parameterization

is not unique (the model with A and P is equivalent to the model with A� ¼ AR and P� ¼ R�1P, where
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R is a nonsingular q� q matrix), and so the unique solution to the estimating equation is not

guaranteed. To get around this problem, additional assumptions on the parameters (called ‘identifia-

bility conditions’) are often made in factor analysis such as assuming that P��1P0 is diagonal (where

� is the error covariance matrix) or the first q columns of P form an upper triangular matrix under an

orthogonal factor model, requiring the lower square submatrix of P to be the identity, or preassigning

zeros in specified positions of P (see, for example, Anderson, 1984). Although there could be infinitely

many different identifiability conditions in principle, not all of them are physically meaningful or

make sense in a given context. Among the conditions aforementioned, preassigning zeros in specified

positions of P are often used in receptor modeling. Zero elements in a specified position of P imply

that some particular variables do not depend on some specific factors, i.e. some sites (or species if

multiple species are measured at a single receptor) are not contributed to by a particular source. This is

often a realistic assumption, but not always. In some cases, we may not have any prior information on

the source profiles P to determine which source does not contribute to particular sites (or species), or

simply there may not be enough zeros in the source profiles to satisfy identifiability conditions.

The following example on air pollution spatial data illustrates this case. The ambient measurements

on PM2.5 (the airborne particulate matter less than 2.5 mm in aerodynamic diameter) were collected

from 11 monitoring sites in the nearby Grand Canyon National Park during the summer of 1992. The

resulting data set consists of 53 observations on 11 variables (receptor sites). A major constituent of

PM2.5 is often sulfate formed in the air by oxidation of sulfur dioxide gas. Physically, there are three

major source regions of sulfur dioxide gas (which is oxidized to particulate sulfate) in the region:

urban and agricultural sources in southern California, a few large electric power plants, and smelters in

southern Arizona and northern Mexico. During the summer, the wind patterns are such that only one

large power plant is likely to affect the study region. It is located near the center of the region on the

map in Figure 1 where CA, AZ and NV all come together. At times, southerly winds during the

summer bring moisture and pollution up from the southeast into the study area. These so-called

monsoon winds carry airborne sulfate pollution from smelters in southeast AZ and northern Mexico.

Source profiles for them were not available, and so traditional identifiability conditions of preassigning

Figure 1. Map of receptor sites (*) near Grand Canyon
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zeros in specified positions of P matrix cannot be utilized here. In this case we lack alternative

identifiability conditions in the literature. We will revisit this example in Section 4.2. One of the goals

of this article is to provide alternative sets of identifiability conditions when the conventional

identifiability conditions fail to be satisfied. This issue will be more extensively discussed in Section 2.

The number of parameters in model (2) increases to infinity as the sample size increases. Kiefer and

Wolfowitz (1956) showed that without making additional assumptions consistent estimation of the

structural parameter (P in our model) is not possible when there are infinitely many incidental

parameters (�i, the rows of A). To get around this problem, they assumed that the incidental parameters

were independently distributed chance variables with a common unknown distribution function. This

type of model is referred to as a ‘structural model (random factor model)’ in the literature as opposed

to a ‘functional model (nonrandom factor model)’ that considers �i to be a vector of nonrandom

quantities that varies from one observation to another. The assumption of the structural model was

made in some previous works by statisticians in receptor modeling (Bandeen-Roche and Ruppert,

1991; Yang, 1994).

As a matter of fact, many environmental engineers want to view the source contributions as fixed

parameters, not random variables, which calls for the functional model. To achieve a consistent

sequence of estimators, a parameter space for A, however, needs to be further restricted for the reasons

in Kiefer and Wolfowitz (1956). Variations of functional models that restrict the space of incidental

parameters, including Quasi Random Functional Model (which is a generalization of the model used

in Kiefer and Wolfowitz, 1956) and the Replicated Functional Model, were reviewed and summarized

in Gleser (1983).

Quasi-random functional models assume that the first and the second sample moments of the rows

of A converge to some fixed vector and matrix, respectively, while treating the rows of A as fixed

parameters. With appropriate identifiability conditions, e.g. prespecification of zeros in P, we can

get consistent estimates of source profile matrix P and mean contribution �0 ¼ limn!1 �� ¼
limn!1n�1

Pn
i¼1 �i, where �i ¼ ð�i1; . . . ; �iqÞ by, for example, constrained nonlinear least squares

(Park et al., 1999). Asymptotic normality of the estimator of the source profile matrix can also be

established (see Park et al., 1999). The estimates of the individual source contributions, �i, however,

are not consistent since there is only one observation for each contribution.

Replicated functional models assume that there are replicated observations for each �i. This

assumption often makes sense in the context of air pollution study. Air pollution measurements are

usually measured over time. Modern instruments are capable of measuring pollution every few

fractions of a second. Typically these replicate measurements are aggregated into larger time blocks,

for example hourly or daily measurements. The belief and hope of the measurement scientists is that

the pollution is stable enough over the aggregation period that aggregation decreases measurement

error but does not mask trends. Another example is that the amount of pollution may show some daily

(or weekly or monthly) pattern. In that case, it would be more appealing to make an assumption that

the source contributions are repeated daily (or weekly or monthly) rather than to treat them all

differently. Further, replicated functional models are sometimes more advantageous than quasi-

random functional models or structural models because they can, at least, provide consistent

estimators not only for the mean contribution but also, for example, for 24 h contributions. In this

article, we focus our attention on replicated functional models.

Currently the EPA is considering recommending a standard approach for receptor modeling; see

http://www.epa.gov/oar/oaqps/pams/analysis/receptor/rectxtsac.html. The goal of this article is to

illuminate the multivariate receptor modeling from a statistical science viewpoint, with the intention of

providing methods for estimating the source profiles and contributions consistently, and also to present
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new sets of identifiability conditions that are often reasonable in practice. The rest of the article is

organized as follows. In Section 2, the issue of model identifiability is revisited, and new sets of

identifiability conditions that are often realistic in the context of receptor modeling are presented.

Section 3 describes the estimation methods. In Section 4, we illustrate our methods using both

simulated data and real data. Finally, closing comments are made in Section 5.

2. IDENTIFIABILITY OF THE MODEL PARAMETERS

We assume that in model (2) each row of matrix E has mean vector 0 and variance–covariance matrix

�, and A and P are unknown constant matrices. We also place physical constraints on A and P. The

elements of A and the elements of P are nonnegative.

�ik � 0; pkj � 0 ð3Þ

where i ¼ 1; . . . ; n; k ¼ 1; . . . ; q; j ¼ 1; . . . ; p.

We first need to introduce the definition of the model identification.

Definition 1: Let Y be a matrix of the observable random variables, � be a matrix of the parameters of

interest, and FYðC; �Þ be the distribution function of Y for parameter � evaluated at Y ¼ C. The

parameter � is identified if, for any �1 and �2 in the parameter space,

FYðC; �1Þ ¼ FYðC; �2Þ for all C

implies that

�1 ¼ �2

If the parameter � is identified, we also say that the model is identified.

A normal distribution plays the least favorable role in model identifiability in the sense that if the

parameters are identified under the normal distribution then they are typically identifiable under other

distributions but the reverse does not hold (Moran, 1971; Gleser, 1983, 1991). Thus, if we could show

identifiability of the parameters under normal distribution (which is entirely determined by its mean

and variance), identifiability will in general hold under any other distributions (having mean and

variance). In normal error case, the distribution of Y is entirely determined by AP and �. That is,

FYðC;A1P1;�1Þ ¼ FYðC;A2P2;�2Þ implies that A1P1 ¼ A2P2 and �1 ¼ �2, and vice versa. It does

not, however, automatically imply that ðP1; A1Þ ¼ ðP2; A2Þ, which are the parameters of our interest.

Thus, in our case, Definition 1 can be reduced to the following.

Definition 2: The parameter (P;A) is identified if, for any (P1; A1) and (P2; A2) in the parameter space,

A1P1 ¼ A2P2

implies that

P1 ¼ P2 and A1 ¼ A2

We also define near identifiability of the model parameters.

Definition 3: The parameter (P;A) is nearly identified if, for any ðP1; A1Þ and ðP2; A2Þ in the parameter

space,

A1P1 ¼ A2P2
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implies that

P1 � P2 and A1 � A2; elementwise:

That is, for example, the elements of P and A are unique up to three significant digits even if an infinite

number of solutions are possible for all the remaining digits.

Since both A and P are unknown, the parameterization for the mean is not unique, i.e.

EðYÞ ¼ AP ¼ A�P�, and so our model is not identified. Under the additional assumption that

rank(A)¼ q, rank(P)¼ q, it can be shown that AP ¼ A�P� always implies that A� ¼ AR and

P� ¼ R�1P for a nonsingular matrix R. Thus, with the additional rank assumption, nonidentifiability

of model (2) is again reduced to the so-called ‘factor indeterminacy’ problem in factor analysis. Since

there are q2 elements in the matrix R, we need to put q2 independent conditions on P or A to rule out

this indeterminacy. One set of such conditions is:

C1. There are at least q� 1 zero elements in each row of P.

C2. The rank of PðkÞ is q� 1, where PðkÞ is the matrix composed of the columns containing the

assigned 0s in the kth row with those assigned 0s deleted.

These conditions can be found in usual multivariate analysis textbooks (see, for example, Anderson,

1984, Section 14.2.2). Under C1–C2, the rows of P are identified except for multiplication by a scale

constant (i.e. R is diagonal). By adding a normalization constraint such as

C3-1. pkj ¼ 1 for some jð j ¼ 1; . . . ;PÞ for each k ¼ 1; . . . ; q
or

C3-2.
Pp

j¼1 pkj ¼ 1 for each k ¼ 1; . . . ; q

the multiplication of a row of P by a scale constant can easily be eliminated (i.e. R¼ I). Factor analysis

with these identification conditions (C1; C2; C3-1) has been referred to as ‘confirmatory’ factor

analysis in the literature. Note that the normalization constraint (C3-1 or C3-2) is somewhat arbitrary

and does not recover the absolute values in P (in fact, without extra information such as the total mass

of each source profile, it is not possible to know the absolute values in P). The constraint
Pp

j¼1 pkj ¼ 1

indicates that only the relative amount of species at each site emitted from a source is of our interest.

As long as the relative amounts of species in a source profile are given, we consider the source

identified. The related but much stronger set of conditions is:

D1. There are at least q columns in P with each of the q columns containing only one nonzero

element.

D2. Same as C2.

D3. Same as either C3-1 or C3-2.

These correspond to the assumption of having a tracer element for each source, which have been used

for a long time for identifiability in the receptor modeling community. A ‘tracer element’ is a single

species (a single site in this article) that is contributed by a single pollution source, i.e. the nonzero

element in D1. It can be easily checked that C1 is automatically satisfied if we have a tracer element

for each source, but not vice versa.

Both sets of identifiability conditions (C1–C3 and D1–D3) are the assumptions on the source profile

matrix P, and require some prior knowledge about P to get an idea of where to assign 0s. Those

conditions were used in some of the previous works in receptor modeling, e.g. D1–D3 by Bandeen-

Roach and Ruppert (1991) and Spiegelman and Dattner (1993), and C1–C3 by Yang (1994). Although

the conditions C1 and C2 are often reasonable assumptions in receptor modeling, there are some cases
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that those conditions cannot be used due to the reasons mentioned in Section 1. Here, we present two

new sets of assumptions for identifiability to help solve a factor indeterminacy problem. We need only

one set of assumptions to hold for A and P to be identifiable. The first set of our assumptions is:

A1. There are at least q� 1 zero elements in each column of A.

A2. The rank of AðkÞ is q� 1, where AðkÞ is the matrix composed of the rows containing the

assigned 0s in the kth column with those assigned 0s deleted.

A3.
Pp

j¼1 pkj ¼ 1 for each k ¼ 1; . . . ; q.

The conditions A1–A3 are parallel to the conditions C1–C3, and model identifiability by these

conditions can be proved in the same manner (the proof is given in the Appendix). The condition A1 is

also closely related to Henry’s assumption that the data contain some points such that each source is

missing (Henry, 1997a). He argued that if there are at least ðq� 1Þ edge points (data points that have

one source missing) for each source and the edge points do not have any multicollinearities of

dimension less than q� 1, then the solution to the general mixture problem is unique. Although his

conditions are given in terms of data, they can be converted to identifiability conditions on parameters

in no error case (in that case, the requirement of q� 1 edge points is equivalent to A1).

The second set of our assumptions is:

B1. Each source is missing on some days (and we know when a source is missing).

B2. The average contribution of jth ð j ¼ 1; . . . ; qÞ source when the kth (k 6¼ j) source is missing is

equal to the average contribution of the jth source for all days.

B3. The row sum of P is 1.

Define Ik to be a subset of f1; 2; . . . ; ng for which the kth source is missing, ��
ðkÞ
j as the average

contribution of the jth source when the kth source is missing ð j 6¼ kÞ, and ��j as the average

contribution of the jth source for all days. Then the above assumptions can be expressed as follows:

For B1–B2,

B1. �ik ¼ 0 when i 2 Ik; k ¼ 1; . . . ; q.

B2. ��
ðkÞ
j ¼ ��j; j ¼ 1; . . . ; q; j 6¼ k.

B3.
Pp

j¼1 pkj ¼ 1 for each k ¼ 1; . . . ; q.

Remark 1: Note the assumption that rank(A)¼ q and rank(P)¼ q is necessary to make the problem of

‘nonunique parameterization of mean’ equivalent to the ‘factor indeterminacy’ problem. Though it is

suppressed, the rank assumption on A and P is necessary for all of the identifiability conditions in this

section to serve as model identifiability conditions not just as conditions to remove factor indeterminacy.

Remark 2: The identifiability conditions A1–A2 or B1–B2 are physically meaningful. For instance, a

factory may shut down for a few days due to an equipment failure and/or repair. The other pollution

sources, however, would emit what they have been emitting no matter whether the factory shuts down

or not. Also, local weather conditions, say thunderstorms, around the pollution sources in Utah,

southern California or Arizona keep the local pollution from reaching the receptors but have no effect

on pollution in other areas. That is, the absence of a source at the receptors is due to weather conditions

at the source and not at the receptors or at the other sources.

Remark 3: In general, A1–A2 will be handy when the number of sources q is small, whereas B1–B2

will be when q is moderately large—say q¼ 7. For A1–A2 to be satisfied, we need to have at least six

zeros for each of seven columns of the A matrix (and the submatrix consisting of the rows containing
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zeros with those zeros deleted should be of rank 6). Suppose that one of the sources is missing only for

4 days, which violates A1. In this case, B1 is still satisfied and B2 might also be satisfied.

The following results show that under each set of assumptions, A1–A3 or B1–B3, nonidentifiability

of the model parameters can be removed. That is, A� ¼ A and P� ¼ P. The proofs are given in

Appendix A.

Result 1: Let Assumptions A1–A3 hold. Then

R ¼ I

where I is the q� q identity matrix and R is any nonsingular matrix satisfying A� ¼ AR and

P� ¼ R�1P.

Result 2: Let Assumptions B1–B3 hold. Then

R ¼ I

where I is the q� q identity matrix and R is any nonsingular matrix satisfying A� ¼ AR and

P� ¼ R�1P.

Remark 4: Condition B2 can be relaxed to ��
ðkÞ
j � ��j, and in that case the parameters are nearly

identified (Definition 3), i.e. R � I, elementwise.

Remark 5: We emphasize that all the conditions cited in this article are sufficient conditions but not

necessary conditions for model identifiability.

3. ESTIMATION OF SOURCE PROFILES AND CONTRIBUTIONS

In Section 3.1, the basic physical model (1) is rewritten in terms of a replicated functional model, and

in Section 3.2 an estimation method based on this model is discussed.

3.1. Model

Assume that there are mi replications for each source contribution �i. Consider the model

y
ij
¼ �iPþ "ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ;mi ð4Þ

where y
ij

( p-dimensional row vector) is the jth replication of the measurement in time period i (for

example, y
11

is the first replicate of the measurement on day 1, y
12

is the second replicate of the

measurement on day 1, etc.), �i (q-dimensional row vector) is the source contribution in time period i

(the ith source contribution) and "ij ( p-dimensional row vector) is a random error associated with the

jth replication of the measurement in time period i. We assume that the "ijs are independent and

identically distributed with mean vector 0 and covariance matrix � ¼ �2Ip. The source contributions

�i and the source profile matrix P are unknown parameters.

Let N ¼
Pn

i¼1 mi. In matrix terms, model (4) can be expressed as

Y ¼ UAPþ E ð5Þ
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where

A ¼
�1

..

.

�n

2
64

3
75; U ¼

1m1
0 . . . 0

0 1m2
. . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1mn

2
6664

3
7775

1mi
is an mi-dimensional column vector consisting of 1s, and E is an N � p error matrix consisting of

"ij. We have

EðYÞ ¼ UAP

and

VarðYÞ ¼ IN � �

Note that U is a known N � n matrix. Under the identifiability conditions A1–A3 or B1–B3 described

in Section 2, UA1P1 ¼ UA2P2 implies that A1 ¼ A2 and P1 ¼ P2.

3.2. Estimation

Since we are not making any distributional assumptions, we consider the least squares approach

minimizing the sum of squares between the observed value of Yand its mean subject to the constraints

on the parameters (nonnegativity and identifiability conditions). This estimation procedure will be

referred to as ‘constrained nonlinear least squares (CNLS)’ hereafter.

The CNLS estimators of A and P are obtained by minimizing the sum of squares,

QNðP;AÞ ¼ N�1tr ðY � UAPÞtðY � UAPÞ
� �

¼ N�1tr ðY � U�YÞtðY � U�YÞ
� �

þ N�1tr ðU�Y � UAPÞtðU�Y � UAPÞ
� �

¼ N�1tr ðY � U�YÞtðY � U�YÞ
� �

þ N�1tr Mð�Y � APÞð�Y � APÞt
� �

ð6Þ

where

M ¼ U0U ¼

m1 0

m2

. .
.

0 mn

2
6664

3
7775 and �Y ¼

m�1
1

Pm1

j¼1 y1j

m�1
2

Pm2

j¼1 y2j

..

.

m�1
n

Pmn

j¼1 ynj

2
66664

3
77775

over the feasible set �,

where

� ¼ fðP;AÞj�ik � 0; pkj � 0; i ¼ 1; . . . ; n; k ¼ 1; . . . ; q; j ¼ 1; . . . ; p; rðAÞ ¼ rðPÞ ¼ q; IAg

where rðAÞ ¼ rankðAÞ; rðPÞ ¼ rankðPÞ and IA (=A1–A3 or B1–B3) is a set of the identifiability

conditions defined in Section 2. Since the first term of (6) does not depend on A or P, minimizing
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QNðP;AÞ is equivalent to minimizing

Q�
NðP;AÞ ¼ N�1tr

�
Mð�Y � APÞð�Y � APÞt

�

w:r:t: A and P. Since both A and P are unknown parameters, one might think of alternating regression

between A and P. Alternating regression, however, may take a huge amount of time to converge or it

may not converge at all in some cases. Thus we use the least squares formula for either A or P as a

function of the other to get convergence and also to save the running time. According to which set of

identifiability conditions is available, we may choose between two types of the fitting algorithms.

Remark 6: When " has a covariance matrix � that is not equal to �2Ip, we consider the transformed

model

Y� ¼ UAP� þ E�

where Y� ¼ Y��1
2; P� ¼ P��1

2 and E� ¼ E��1
2 with � known. In practice, laboratories often report

the measurement error variance estimates along with the data based upon calibrations or laboratory

experience with the instrument. Note that these estimates are obtained from outside the data modeled

by (4), and can be used in place of � to transform the data matrix. Then (6) can still serve as a valid

objective function with Y and P replaced by Y� and P�, respectively.

Fitting procedure (CNLS1)

1. Given A, P can be estimated by

~P ¼
�
ðUAÞtðUAÞ

��1ðUAÞtU�Y ¼ ðAtMAÞ�1
AtM�Y

2. Find Ã which minimizes

Q�
NðP;AÞ ¼ N�1tr

�
Mð�Y � A~PÞð�Y � A~PÞt

�
¼ N�1tr M

�
�Y � AðAtMAÞ�1

AtM�Y
��
�Y � AðAtMAÞ�1

AtM�Y
�th i

¼ N�1tr �Y
t
M
�
In � AðAtMAÞ�1

AtM
�
�Y

h i

over the feasible set �A, where

�A ¼ Aj�ik � 0; i ¼ 1; . . . ; n; k ¼ 1; . . . ; q; rankðAÞ ¼ q; I�A
� �

where I�A is a set of the identifiability conditions, A1–A2 or B1–B2, defined in Section 2.

3. Set P̂ as P̂ ¼ D�1ð~At
M~AÞ�1 ~A

t
M�Y and Â as Â ¼ ~AD, where D is the diagonal normalizing constant

matrix with each diagonal element being the row sum of ð~At M~AÞ�1~AtM�Y:

Note that Step 3 is needed only to incorporate the normalization constraint. The objective function

is as before because DD�1 cancels. Since AD is in the space of feasible As, the optimum at each step is

exactly the same as it was.

Since we have replicated observations for each �, the resulting estimator for the source contribution

matrix, Â, can be shown to be consistent when mi ! 1; lim mi

N
¼ ci > 0:
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Theorem ðConsistency of ÂÞ: Let A0, P0 and �0 be the true values of A, P and �, respectively. Let the

parameter space for A, �A be a compact subset of n� q-dimensional Euclidean space containing A0.

Assume the identifiability conditions A1–A3 or B1–B3 in Section 2 are satisfied. Also assume that

A0P0 is in the interior of a subset of n� p-dimensional Euclidean space. Then, when

mi ! 1; lim mi

N
¼ ci > 0; i ¼ 1; . . . ; n;

Â!p A0

Proof: The proof is given in Appendix B.

It can also be shown that, for the free parameters of A (i.e. after the restrictions on A due to

identifiability conditions are taken into account), the corresponding elements of Â are asymptotically

normal assuming that the true parameter values are not on the boundary of the parameter space, i.e. the

true parameter values of the free elements of A are nonzero (Park et al., 1999). If the true values of

some of the free elements of A are zero, then the limiting distribution of Â would not be a normal

distribution. It would be a mixture of point mass at zero and a normal distribution.

Let P̂ ¼ ðÂtMÂÞ�1
ÂtM�Y . Consistency of P̂ follows from consistency of Â and the fact that

�Y!p A0P0. Since P̂ is a nonlinear function of Â (and �Y), the asymptotic covariance of P̂ is not given in a

simple form, though P̂ can be proved asymptotically normal. It is well known that in nonlinear least

squares the asymptotic variance determined by the delta method is optimistic. This is noted in a

number of places, for example, Efron (1982) and Bates and Watts (1988). Also, the errors are more

likely to be heavy tailed and cause the normal approximation to require unrealistic sample sizes (here,

the number of replications) even if the limiting distribution were normal. For these reasons, we employ

a bootstrap method to obtain the approximate covariance matrix of P̂. The estimates are asymptotically

unbiased by the consistency of P̂. We adapt an algorithm in Davison and Hinkley (1997) for our

model (5):

For b ¼ 1; . . . ;B (B is the bootstrap size):

1. Find Â and P̂ based on the original data.

2. Compute residuals by r ¼ ðI � DHÞ�
1
2ðY � UÂP̂Þ, where DH is a diagonal matrix consisting of the

diagonal elements of H ¼ ðUÂÞfðUÂÞtðUÂÞg�1ðUÂÞt:
3. Randomly sample "�j from r1 � �r; . . . ; rN � �r, where ri ði ¼ 1; . . . ;NÞ is the ith row of the matrix r

and �r is the residual mean vector, i.e. �r ¼ N�1ð
PN

i¼1 ri1; . . . ;
PN

i¼1 ripÞ:
4. Set Y� ¼ UÂP̂þ E�, where E� ¼ ð"�1; . . . ; "�NÞ

t:

Bootstrap estimators P̂� are obtained for B bootstrap samples, and bootstrap standard errors (BSEs) of

P̂ can be obtained using the sample covariance matrix of those P̂�:

Remark 7: Though the above fitting procedure is general in the sense that either A1–A3 or B1–B3 can

be incorporated in it, especially in the case of A1–A3 being used, we may employ an alternative

procedure to reduce a computational burden. The alternative algorithm uses a least squares formula for

A as a function of P, and then optimization is done over P instead of over A:

CNLS based on A1–A3 (CNLS2) Let I0 ¼ f1; . . . ; ng � [k¼1;...qIk, where Ik is defined in Section 2

(i.e. index set when the kth source is missing). Also define AI0 to be the source contribution matrix

consisting of the rows corresponding to I0 and �iðkÞ to be the ith source contribution vector with the kth

element deleted.
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1. Given P, A can be estimated by

~AI0 ¼ �YI0P
tðPPtÞ�1

~�ðkÞi ¼ �yiP
t
ðkÞ
�
PðkÞP

t
ðkÞ
��1

; i 2 Ik

where �YI0 is the submatrix of �Y composed of the rows corresponding to I0 and PðkÞ is a source

composition matrix with the kth row deleted.

2. Find ~P which minimizes

Q�
NðP; ~AÞ ¼ N�1tr

�
MI0

�
�YI0 � ~AI0P

��
�YI0 � ~AI0P

�t�þ X
i2Ik ; k¼1;...;q

mi

N

�
�yi � ~�ðkÞiPðkÞ

�t�
�yi � ~�ðkÞiPðkÞ

�

¼ N�1tr
�
MI0

�YI0

�
Ip � PtðPPtÞ�1

P
�
�Y
t
I0

�
þ

X
i2Ik ; k¼1;...;q

mi

N
�yi
�
Ip � Pt

ðkÞ
�
PðkÞP

t
ðkÞ
��1

PðkÞ
�
�yti

over the feasible set �p for which the nonnegativity constraints and the full row rank assumption on P

are satisfied.

3. Set P̂ as P̂ ¼ D�1~P and Â as Â ¼ ~AD, where D is the diagonal normalizing constant matrix with

each diagonal element being the row sum of ~P.

Remark 8: The consistency and asymptotic normality of P̂ from CNLS2 can also be shown, though it is

not provided in this article due to the limited space. Bootstrap standard errors can be obtained the same

way as before.

Remark 9: The rank assumptions can be incorporated into the fitting procedure by forcing the

condition numbers (the condition number of P can be defined to be the ratio of the smallest and the

biggest eigenvalues of PPt, and the condition number of A can be defined similarly based on AtA) to be

less than or equal to some threshold (say 30), i.e. in the optimization step, the feasible set of P (or A) is

restricted to be the one satisfying the condition number constraints.

Remark 10: Note that the estimators from CNLS1 and CNLS2 are consistent even if the error variances

are not constant (i.e. � 6¼ �2Ip and � is unknown).

4. SIMULATION AND APPLICATION TO REAL DATA

In Section 4.1, we apply our method to the simulated data generated under model (5) with the

assumptions B1–B2 and A1–A2, respectively. In Section 4.2, the method is illustrated with the Grand

Canyon sulfate data.

4.1. Simulation

We first consider a simulated example to illustrate CNLS1 with B1–B3. The data are generated based

on the model (5) with restrictions B1–B2, where N ¼ 150, n ¼ 30 (assuming the source contributions

are repeated monthly), p ¼ 7 and q ¼ 3. Although the number of replications mi need not be equal, for

the sake of brevity, the same number of replications are used for the source contributions. Thus,

m1 ¼ m2 ¼ � � � ¼ m30 ¼ 5. The true source profiles (normalized to sum to 1) are given in Table 1. The
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source contribution matrix A is generated from U(0;3) with the conditions B1–B2 satisfied in Section 2.

It is assumed that source 1 is missing on the 8th day, source 2 is missing on the 7th day and source 3 is

missing on the 6th day, and when each source is missing, the average source contributions of the other

sources stay the same. The errors associated with N observations are independently generated from the

normal distribution so that the proportions of the error standard deviations to the model standard

deviations are �23–27%. The resulting data matrix Y consists of nonnegative numbers. Note that

the constrained minimization is done with A. Once we get the estimated source contributions, Â,

the source profiles are estimated by the least squares formula, i.e. P̂ ¼ ðÂtMÂÞ�1
ÂM�Y; M ¼ 5 � I30.

Table 1 also contains the estimated source profiles and bootstrap standard errors for P̂t based on 50

bootstrap samples. Although the nonnegativity constraints for the source profiles were not used, the

estimates are all nonnegative. It is observed from the simulation that only when the true source profile

matrix contains zeros are the corresponding estimates (of zeros) negative. In that case, it would be a

natural choice to replace the negative estimates with 0 and renormalize each source profile. Figure 2

contains residual plots of Nð¼ 150Þ observations for each of seven species. Figure 3 shows the

principal component plot of the data, the true source profiles and P̂. It can be seen that P̂ gives a very

good approximation to the true source profile matrix.

The simulation is repeated 20 times. Since we are assuming that A and P are fixed parameters, the

same A and P matrices are used for 20 simulations. Errors are regenerated from the normal distribution

at each simulation. Throughout the simulation the proportions of the error standard deviations to the

model standard deviations are �23–27%. The sample average and standard errors for P̂ based on these

20 simulations are given in Table 2. Table 3 contains R2 values between true source profiles and

estimated profiles ðR2
pÞ, and true source contributions and estimated contributions ðR2

AÞ, respectively. It

can be seen from these results that the estimated profiles (and contributions) are generally in very good

agreement with the true source profiles (and contributions).

Secondly, we apply CNLS2 with A1–A3 to the data generated under model (5) with restrictions

A1–A2, where N ¼ 150, n ¼ 30, p ¼ 7, q ¼ 3 and m1 ¼ m2 ¼ � � � ¼ m30 ¼ 5. The true source

profiles are given in Table 4. The source contribution matrix A is generated from U(0;3) with

conditions A1–A2 satisfied. It is assumed that source 1 is missing on the 8th and 15th days, source 2 is

missing on the 7th and 14th days, and source 3 is missing on the 6th and 13th days. The errors

associated with N observations are independently generated from the normal distribution so that the

proportions of the error standard deviations to the model standard deviations are �22–27%. The

resulting data matrix Y consists of nonnegative numbers. Note that the constrained minimization is

Table 1. True source composition profiles (Pt
0), estimated source composition profiles (P̂t) and bootstrap

standard errors (BSE) for P̂t from CNLS1 (using B1–B3)

Species Source 1 Source 2 Source 3

True Estimate BSE True Estimate BSE True Estimate BSE

1 0.1347 0.1324 (0.0052) 0.1944 0.2043 (0.0091) 0.1529 0.1496 (0.0040)
2 0.1636 0.1675 (0.0040) 0.1409 0.1460 (0.0051) 0.1784 0.1725 (0.0036)
3 0.0210 0.0135 (0.0053) 0.1496 0.1354 (0.0138) 0.0113 0.0307 (0.0040)
4 0.1474 0.1550 (0.0046) 0.0757 0.0806 (0.0095) 0.1964 0.1817 (0.0050)
5 0.0053 0.0076 (0.0151) 0.1906 0.2036 (0.0186) 0.2180 0.2104 (0.0108)
6 0.3512 0.3389 (0.0153) 0.1958 0.1698 (0.0162) 0.0985 0.1254 (0.0119)
7 0.1768 0.1851 (0.0067) 0.0531 0.0603 (0.0136) 0.1445 0.1297 (0.0041)

Note: Bootstrap standard errors based on 50 bootstrap samples are provided in parentheses.
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Figure 2. Residual plots of Nð¼ 150Þ observations for each species from applying CNLS1 with B1–B3

Figure 3. Principal component plots of simulated data (.), true sources (þ) and fitted sources using CNLS1 (*) with B1–B3.

Data and source profiles are normalized to sum to 1 before being plotted. The axes (zi) are the eigenvectors of the cross-product

matrix of the normalized data

788 E. S. PARK, C. H. SPIEGELMAN AND R. C. HENRY

Copyright # 2002 John Wiley & Sons, Ltd. Environmetrics 2002; 13: 775–798



now done with P. Once we get the estimated source profiles P̂, the source contributions are estimated

by the ordinary least squares as given in point 1 of Remark 7. Table 4 also shows the estimated source

profiles with bootstrap standard errors based on 50 bootstrap samples. Figures 4 and 5 contain the

residual plots and the principal component plots, respectively. It can be seen that P̂ gives a very good

approximation to the true source profile matrix.

The simulation is repeated 20 times. As before, only errors are regenerated from the normal

distribution at each simulation with �22–27% of the proportions of the error standard deviations to

the model standard deviations. The matrices A and P are kept the same throughout the simulations.

The results are reported in Tables 5 and 6. It can be seen from those tables that the estimated profiles

(and contributions) are generally in good agreement with the true source profiles (and contributions).

Table 2. Sample average of P̂t based on 20 independent samples (CNLS1 with B1–B3)

Species Source 1 Source 2 Source 3

1 0.1327 (0.0042) 0.1903 (0.0043) 0.1578 (0.0038)
2 0.1654 (0.0039) 0.1443 (0.0051) 0.1740 (0.0036)
3 0.0139 (0.0028) 0.1338 (0.0040) 0.0298 (0.0035)
4 0.1526 (0.0033) 0.0906 (0.0042) 0.1804 (0.0048)
5 0.0103 (0.0089) 0.1952 (0.0134) 0.2141 (0.0073)
6 0.3458 (0.0112) 0.1835 (0.0120) 0.1093 (0.0071)
7 0.1792 (0.0036) 0.0623 (0.0049) 0.1345 (0.0036)

Note: Standard errors based on 20 independent samples are given in parentheses.

Table 3. R2 between P0 and P̂ðR2
PÞ and R2 between A0 and ÂðR2

AÞ over 20 simulations (CNLS1 with B1–B3)

Simulation no. Source 1 Source 2 Source 3

R2
P R2

A R2
P R2

A R2
P R2

A

1 0.9975 0.9862 0.9655 0.9555 0.9915 0.9443
2 0.9934 0.9848 0.9879 0.9657 0.9827 0.9311
3 0.9992 0.9913 0.9639 0.9495 0.9827 0.9325
4 0.9980 0.9927 0.9237 0.9276 0.9751 0.9389
5 0.9929 0.9901 0.9725 0.9573 0.9814 0.9340
6 0.9971 0.9888 0.9850 0.9494 0.9746 0.9513
7 0.9971 0.9890 0.9688 0.9498 0.9783 0.9456
8 0.9940 0.9891 0.9682 0.9378 0.9630 0.9426
9 0.9955 0.9893 0.9779 0.9518 0.9887 0.9445

10 0.9973 0.9802 0.9530 0.9460 0.9680 0.9437
11 0.9981 0.9856 0.9506 0.9613 0.9862 0.9315
12 0.9985 0.9835 0.9118 0.9683 0.9860 0.8850
13 0.9970 0.9894 0.9541 0.9530 0.9867 0.9410
14 0.9993 0.9786 0.9044 0.9638 0.9784 0.9175
15 0.9949 0.9885 0.9787 0.9519 0.9814 0.9424
16 0.9994 0.9689 0.8308 0.9494 0.9851 0.9081
17 0.9973 0.9879 0.9736 0.9352 0.9712 0.9339
18 0.9967 0.9882 0.9685 0.9423 0.9931 0.9504
19 0.9997 0.9888 0.9521 0.9515 0.9826 0.9430
20 0.9953 0.9880 0.9684 0.9576 0.9847 0.9381
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4.2. Application to real data: Air pollution spatial data

The data set consists of 53 observations on 11 sites collected during the summer of 1992. Figure 1

contains the map of the 11 receptors used in this analysis. The variables are concentrations of a single

species airborne particulate sulfate at 11 sites and the observations are 24 h average PM2.5

concentrations. The receptor model implies that the data can be represented by linear combinations

of source profiles, which in this case represent the impact of several spatially distinct source areas.

Though the regional pattern of sulfate concentrations would depend on the shifting wind patterns, the

regional wind patterns are fairly constant over the same period as the observed air pollution

Table 4. True source composition profiles (Pt
0), estimated source composition profiles (P̂t) and bootstrap

standard errors (BSE) for P̂t from CNLS2 (using A1–A3)

Species Source 1 Source 2 Source 3

True Estimate BSE True Estimate BSE True Estimate BSE

1 0.0595 0.0657 (0.0119) 0.1086 0.1041 (0.0067) 0.2129 0.2194 (0.0039)
2 0.1586 0.1691 (0.0178) 0.2526 0.2504 (0.0079) 0.3573 0.3644 (0.0064)
3 0.0717 0.0889 (0.0169) 0.0043 0.0000 (0.0149) 0.2900 0.2988 (0.0062)
4 0.0732 0.0715 (0.0055) 0.1684 0.1592 (0.0073) 0.0223 0.0196 (0.0035)
5 0.2299 0.2063 (0.0155) 0.2464 0.2569 (0.0132) 0.0040 0.0000 (0.0026)
6 0.1201 0.1212 (0.0074) 0.2103 0.2085 (0.0075) 0.0827 0.0749 (0.0040)
7 0.2871 0.2773 (0.0192) 0.0094 0.0209 (0.0023) 0.0309 0.0229 (0.0039)

Note: Bootstrap standard errors based on 50 bootstrap samples are provided in parentheses.

Figure 4. Residual plots of Nð¼ 150Þ observations for each species from applying CNLS2 with A1–A3
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concentrations. Regional wind patterns tend to be very consistent in any given season of the year. The

main variability is between seasons. Of course, there is also large variability in regional wind patterns

during the day that are caused by terrain. Examples of this are sea–land breezes and mountain valley

flows. However, by using 24 h average data, these short time scale variations are averaged out.

As the referee pointed out, the spatial pattern of sulfate from each source is dependent on the wind

patterns. Since there are only a few distinct source regions and only a few 1-day average regional wind

patterns, then it is physically realistic to assume that there will only be a few underlying sulfate

concentration patterns. Since the overall spatial wind flow patterns are approximately constant, so too

the associated concentration patterns are approximately constant. Note that it is the spatial pattern or

source profile for each that is relatively constant, not the concentrations.

Figure 5. Principal component plots of the simulated data (.), the true sources (þ), and the fitted sources using CNLS2 (~)

with A1–A3. The data and the source profiles are normalized to sum to 1 before being plotted. The axes (zi) are the eigenvectors

of the cross-product matrix of the normalized data

Table 5. Sample average of P̂t based on 20 independent samples (CNLS2 with A1–A3)

Species Source 1 Source 2 Source 3

1 0.0241 (0.0153) 0.1227 (0.0083) 0.2112 (0.0066)
2 0.1096 (0.0206) 0.2685 (0.0083) 0.3570 (0.0071)
3 0.0259 (0.0216) 0.0416 (0.0167) 0.2856 (0.0100)
4 0.0827 (0.0097) 0.1480 (0.0088) 0.0244 (0.0057)
5 0.2806 (0.0204) 0.2137 (0.0147) 0.0057 (0.0082)
6 0.1253 (0.0095) 0.1945 (0.0092) 0.0849 (0.0055)
7 0.3517 (0.0306) 0.0109 (0.0089) 0.0312 (0.0126)

Note: Standard errors based on 20 independent samples are given in parentheses.
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In this analysis, 53 observations themselves are regarded as �Y in Section 3.2 since those

measurements are daily averages of PM2.5. Although measurement error variances are usually

different for different chemical species, here we may safely assume that the error variances are the

same, i.e. � ¼ �2Ip because only one chemical species, PM2.5, was measured and meteorological

conditions appeared to be approximately constant over the 11 sites. We apply CNLS1 with

identifiability conditions B1–B3 to these data. For B1–B2, we assume that source 1 is missing on

days 18 and 49, source 2 is missing on days 42 and 44, and source 3 is assumed to be missing on days

2, 16, 22 and 50, and also assume that when each source is missing, the average source contributions of

the remaining sources stay the same. These edge points are determined by the plots (species by species

plots and/or principal component plots) of the data and the SAFER fit results (Henry and Kim, 1990).

The estimated source profiles and bootstrap standard errors based on 20 bootstrap samples appear in

Table 7. The three estimated source profiles (spatial profiles) are closely related to the three largest

known source regions: source profile 1 shows high (relative) concentration for the receptors, BARS

and SAGO, which corresponds to transport from southern CA; source profile 2 shows high (relative)

concentration for the receptors, GRCA and SYCA, which corresponds to particulate sulfate coming up

from the smelters to the south; source profile 3 shows high (relative) concentration for the receptors,

DOSP, MEAD, SPMO, ESSE and KING, which circle the large coal-fired power plant located near the

center of the map (where CA, AZ and NV all come together). This interpretation of the spatial profiles

is supported by a comprehensive analysis of a superset of this data using different techniques that were

developed by Henry; see Henry (1997b).

We also apply CNLS2 using conditions A1–A3 to these data. For A1–A2, we only need to assume

that source 1 is missing on days 18 and 49, source 2 is missing on days 42 and 44, and source 3 is

assumed to be missing on days 16 and 22, which is weaker than B1–B2 in this case. Note that this is

Table 6. R2 between P0 and P̂ (R2
P) and R2 between A0 and Â (R2

A) over 20 simulations (CNLS2 with A1–A3)

Simulation no. Source 1 Source 2 Source 3

R2
P R2

A R2
P R2

A R2
P R2

A

1 0.8791 0.9925 0.9100 0.9853 0.9973 0.9140
2 0.9607 0.9814 0.9886 0.9875 0.9992 0.9622
3 0.9348 0.9956 0.9699 0.9894 0.9981 0.9521
4 0.9409 0.9946 0.9670 0.9924 0.9998 0.9565
5 0.9456 0.9924 0.9028 0.9910 0.9995 0.9391
6 0.9178 0.9935 0.9428 0.9912 0.9995 0.9418
7 0.9067 0.9810 0.9283 0.9811 0.9929 0.9427
8 0.9261 0.9862 0.9678 0.9758 0.9942 0.9602
9 0.9501 0.9871 0.9637 0.9913 0.9961 0.9623

10 0.8806 0.9923 0.8558 0.9710 0.9971 0.8611
11 0.9937 0.9886 0.9882 0.9929 0.9992 0.9917
12 0.9091 0.9948 0.9110 0.9948 0.9994 0.9218
13 0.9061 0.9946 0.8538 0.9893 0.9996 0.8947
14 0.9362 0.9911 0.8850 0.9874 0.9993 0.9328
15 0.9978 0.9891 0.9982 0.9928 0.9993 0.9934
16 0.9456 0.9947 0.9445 0.9892 0.9984 0.9611
17 0.9416 0.9906 0.9595 0.9913 0.9990 0.9492
18 0.9884 0.9882 0.9901 0.9837 0.9969 0.9927
19 0.9537 0.9891 0.9666 0.9847 0.9994 0.9652
20 0.9363 0.9942 0.9503 0.9934 0.9995 0.9490
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not always the case (see Remark 3). The estimated source profiles and bootstrap standard errors based

on 20 bootstrap samples appear in Table 8. The results, in general, look close to those in Table 7.

Figure 6 shows the principal component plot of the data and the fitted sources. From the plot again it

can be seen that the estimated source profiles give a reasonable fit to the data.

5. CONCLUSIONS

This article has been concerned with consistent estimation of source profiles and contributions and

uncertainty estimation. Although we presented the problem in the context of spatial data on a single

species, the general methodology in the article is applicable to compositional data consisting of

Table 7. Estimated source composition profiles and bootstrap standard errors (BSE) for air pollution spatial
data (P̂t), CNLS1 with B1–B3

Variables Receptors Source 1 Source 2 Source 3

Estimate BSE Estimate BSE Estimate BSE

1 DOSP 0.0584 (0.0088) 0.0795 (0.0135) 0.1356 (0.0096)
2 GRCA 0.0125 (0.0129) 0.1442 (0.0237) 0.0443 (0.0060)
3 MEAD 0.0646 (0.0085) 0.0722 (0.0102) 0.1296 (0.0093)
4 MOSP 0.1443 (0.0134) 0.0163 (0.0208) 0.0965 (0.0091)
5 SAGO 0.2533 (0.0218) 0.0684 (0.0293) 0.0543 (0.0169)
6 SPMO 0.0609 (0.0076) 0.0716 (0.0109) 0.1355 (0.0106)
7 SQMO 0.0288 (0.0093) 0.1278 (0.0144) 0.0540 (0.0072)
8 SYCA 0.0097 (0.0086) 0.1574 (0.0295) 0.0207 (0.0076)
9 BARS 0.2583 (0.0264) 0.0486 (0.0288) 0.0842 (0.0138)

10 ESSE 0.0718 (0.0125) 0.1053 (0.0192) 0.1368 (0.0066)
11 KING 0.0375 (0.0114) 0.1086 (0.0073) 0.1084 (0.0043)

Note: Bootstrap standard errors based on 20 bootstrap samples are given in parentheses.

Table 8. Estimated source composition profiles and bootstrap standard errors (BSE) for air pollution spatial
data (P̂t), CNLS2 with A1–A3

Variables Receptors Source 1 Source 2 Source 3

Estimate BSE Estimate BSE Estimate BSE

1 DOSP 0.0731 (0.0103) 0.0710 (0.0084) 0.1219 (0.0040)
2 GRCA 0.0298 (0.0058) 0.1287 (0.0117) 0.0568 (0.0049)
3 MEAD 0.0762 (0.0069) 0.0662 (0.0075) 0.1165 (0.0033)
4 MOSP 0.1245 (0.0084) 0.0318 (0.0174) 0.0880 (0.0058)
5 SAGO 0.2033 (0.0250) 0.1038 (0.0164) 0.0703 (0.0061)
6 SPMO 0.0744 (0.0084) 0.0643 (0.0077) 0.1208 (0.0043)
7 SQMO 0.0419 (0.0067) 0.1161 (0.0089) 0.0632 (0.0041)
8 SYCA 0.0249 (0.0069) 0.1419 (0.0138) 0.0401 (0.0051)
9 BARS 0.2097 (0.0213) 0.0824 (0.0139) 0.0910 (0.0065)

10 ESSE 0.0862 (0.0134) 0.0976 (0.0168) 0.1277 (0.0079)
11 KING 0.0560 (0.0100) 0.0963 (0.0058) 0.1036 (0.0032)

Note: Bootstrap standard errors based on 20 bootstrap samples are given in parentheses.
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measurements on multiple species collected at a single receptor as well as a general factor analysis

problem. To eliminate model nonidentifiability, new sets of identifiability conditions based on the

source contribution matrix were proposed, which might be useful when the traditional identification

conditions such as prespecification of 0s in the source profile matrix are not satisfied. The conditions

based on the source contribution matrix are often realistic and usually require less prior information

than the conditions based on the source profile matrix. Assuming the amount of errors is small, one

might get an idea of where to assign zeros in the source contribution matrix by classifying the edge

points of the data (if no prior information is available). The applicability of the proposed identifiability

conditions is not restricted to the constant error variance structure nor the least squares method. They

can be utilized in conjunction with MLE or Bayesian methods under a general error covariance

structure if one is willing to make distributional assumptions.

Although it was not further discussed in the article, the conditions on the source contribution matrix

can also be partially combined with the conditions on the source profile matrix to yield a complete set

of model identifiability conditions when neither conditions serve as identifiability conditions by

themselves (i.e. when neither A nor P has a sufficient number of zeros as considered solely).

The estimation procedures of the source profiles and the contributions are based on constrained

nonlinear least squares. This approach has an advantage that no distributional assumption for the data

needs to be made over the other parametric methods such as MLE. The resulting estimators are

consistent as the number of replications goes to 1. Standard errors for the estimators are provided by

the bootstrap method.

Figure 6. Principal component plots of the air pollution spatial data (.), and the fitted sources by CNLS1 (*) with B1–B3 and by

CNLS2 (~) with A1–A3. The data and the source profiles are normalized to sum to 1 before being plotted. The axes (zi) are the

eigenvectors of the cross-product matrix of the normalized data
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APPENDIX A: PROOFS OF RESULTS

Assume rankðAÞ ¼ q and rankðPÞ ¼ q and A3 (B3) hold throughout. We need the following lemma to

prove the results.

Lemma A1: Let rkj denote the ðk; jÞth element of R, where k ¼ 1; . . . ; q; j ¼ 1; . . . ; q.

Then

Xq
j¼1

rkj ¼ 1; k ¼ 1; . . . ; q

Proof: We have P ¼ RP� from P� ¼ R�1P. Thus, the ðk; jÞth element of the matrix P can be expressed

as

Xq
i¼1

rkip
�
ij ¼ pkj

Due to the constraint that row sum of P is 1,

Xp
j¼1

Xq
i¼1

rkip
�
ij ¼

Xp
j¼1

pkj ¼ 1

and, by interchanging the summations,

Xq
i¼1

rki
Xp
j¼1

p�ij ¼ 1

It follows from the constraint
Pp

j¼1 p
�
ij ¼ 1 that

Xq
i¼1

rki ¼ 1

A.1. Proof of Result 1

We also need the following lemma to prove Result 1.

Lemma A2: Under the assumptions A1–A2,

rkj ¼ 0; k ¼ 1; . . . ; q; j ¼ 1; . . . ; q; j 6¼ k
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Proof: This can be proved with the same argument in Anderson (1984, pp. 576–577). Let the

identifiability conditions A1–A2 hold. After reordering the rows of A, we can express A in the form

A ¼ 0 Að1Þ

að1Þ Að1Þ

� �

where 0 is a zero vector of length q� 1; að1Þ is a column vector of length n� q;Að1Þ is a ðq� 1Þ by

ðq� 1Þ submatrix of rank q� 1, and Að1Þ is the submatrix of ðn� qÞ by ðq� 1Þ. Let

R ¼ r11 r12

r21 R22

� �

where R is nonsingular and r11; r12; r21 and R22 are of dimension 1 � 1; 1 � ðq� 1Þ; ðq� 1Þ � 1 and

ðq� 1Þ � ðq� 1Þ, respectively. Also, let

A� ¼ AR ¼ 0 A�ð1Þ

a�ð1Þ A�
ð1Þ

� �

By a matrix multiplication,

AR ¼ r21A
ð1Þ Að1ÞR22

r11að1Þ þ r21Að1Þ r12að1Þ þ Að1ÞR22

� �

Then r21 should be a zero vector since the rank of Að1Þ is q� 1. Now do the same thing with the second

column of A. This may be done after reordering the columns and rows of A (and also of R) so that the

second column comes in first and the zeros are at the top. It follows that R should be a diagonal matrix.

Proof of Result 1: The conclusion immediately follows from Lemmas A1 and A2.

A.2. Proof of Result 2

We need the following lemma to prove Result 2.

Lemma A3: Under Assumptions B1–B2,

rkj ¼ 0; k ¼ 1; . . . ; q; j ¼ 1; . . . ; q; j 6¼ k

Proof: From A� ¼ AR, the ði; jÞth element of the matrix A� can be expressed as

�i1r1j þ �i2r2j þ � � � þ �iqrqj ¼ ��
ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; q

and hence

��1r1j þ ��2r2j þ � � � þ ��qrqj ¼ ���
j ðA:1Þ

Say the kth ðk ¼ 1; . . . ; qÞ source is missing on some days. Then

��
ðkÞ
1 r1 j þ � � � þ ��

ðkÞ
k�1rk�1; j þ ��

ðkÞ
kþ1rkþ1; j þ � � � þ ��ðkÞ

q rqj ¼ ��
�ðkÞ
j ðA:2Þ

j ¼ 1; . . . ; q since ��
ðkÞ
k ¼ 0. Here ��

�ðkÞ
j is defined in a similar way as ��

ðkÞ
j . Subtracting (A.2) from (A.1),
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��1 � ��

ðkÞ
1



r1j þ � � � þ

	
��k�1 � ��

ðkÞ
k�1



rk�1; j þ ��krkj þ

	
��kþ1 � ��

ðkÞ
kþ1



rkþ1;j þ � � � þ

	
��q � ��ðkÞ

q



rqj

¼ ���
j � ��

�ðkÞ
j ðA:3Þ

By applying Assumption B2, we have

��krkj ¼ 0

for j 6¼ k. This implies that rkj ¼ 0 since ��k 6¼ 0 by the assumption that rankðAÞ ¼ q.

Proof of Result 2: The conclusion immediately follows from Lemmas A1 and A3.

APPENDIX B: PROOF OF THEOREM

We need the following lemma to prove the theorem.

Lemma B1: Let gðx; yÞ be a continuous real valued function defined on the Cartesian product A� B,

where A is a subset of p-dimensional Euclidean space and B is a compact subset of q-dimensional

Euclidean space. Let x0 be an interior point of A. Assume that the point y0 is the unique point for which

Miny�Bgðx0; yÞ is attained. Let ymðxÞ be a point in B such that

gðx; ymðxÞÞ ¼ Miny�Bgðx; yÞ

Then ymðxÞ is a continuous function of x at x ¼ x0.

Proof: Appendix 4.B of Fuller (1987).

Proof of theorem: By the WLLN, as mi ! 1; i ¼ 1; . . . ; n;

�Y!p A0P0

Let gð�Y ;N�1M;AÞ ¼ 1
N

tr
�
�Y
t
M
�
In � AðAtMAÞ�1

AtM
�
�Y
�
. Then, by the continuous mapping theorem,

gð�Y ;N�1M;AÞ!p gðA0P0;C;AÞ
where

C ¼

c1 0

c2

. .
.

0 cn

2
6664

3
7775 and ci ¼ lim

mi!1

mi

N
> 0

Note that

Min
���

gðA0P0;C;AÞ ¼ Min
�2�

�
tr
�
Pt

0A
t
0C

�
In � AðAtCAÞ�1

AtC
�
A0P0

��
¼ Min

�2�

�
tr
�
Pt

0A
t
0C

1
2

�
In � C

1
2AðAtCAÞ�1

AtC
1
2

�
C

1
2A0P0

��

is uniquely attained when C
1
2AðAtCAÞ�1

AtC
1
2 ¼ C

1
2A0ðAt

0CA0Þ�1
At

0C
1
2 since the projection matrix is

unique (see, for example, Rao, 1973, Section 1c.4). It follows that A ¼ A0R for any q� q nonsingular
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matrix R. By the identifiability of the model parameters discussed in Section 2 (A1–A3 or B1–B3), this

again implies that A ¼ A0. Thus, Min��� gðA0P0;C;AÞ is uniquely attained at A ¼ A0. By lemma B1,

Â, which is the value of A such that gð�Y ;N�1M; ÂÞ ¼ MinA gð�Y;N�1M;AÞ, is a continuous function of

ð�Y;N�1MÞ and the result follows from the continuous mapping theorem.
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